\qquad AP Calculus BC crossword

Across

3. $\int f(x) \mathrm{dx}$ from a to $\mathrm{INF}=\lim \mathrm{c} \rightarrow \operatorname{INF}$ of $\int f(\mathrm{x}) \mathrm{dx}$ from a to C
4. A point where f^{\prime} changes from negative to positive is called a local
5. If f is continuous on a closed interval, then f has both a minimum and maximum on the interval.
6. A point where f " changes from positive to negative or vice versa.
7. $\left(\int f(x) d x\right) /(b-a)=f(c)$. This solves for the \qquad
8. When $f^{\prime}(x)$ is negative, $f(x)$ is
9. $\int F^{\prime}(g(x)) g^{\prime}(x) d x=F(u)+C=F(g(x))+C$
10. For a convergent alternating series, the absolute value of the
in approximating the sum with
the first n partial sums is less than or equal to the value of the first neglected term.
11. $f^{\prime}(\mathrm{x})=\lim \mathrm{h} \rightarrow 0(f(\mathrm{x}+\mathrm{h})-f(\mathrm{x})) / \mathrm{h}$. Definition of
12. Let sequences $a^{n}>0$ and $b^{n}>0$. If $\lim n \rightarrow \infty a / b=L$, where L is finite and positive, then the two sequences either both converge or both diverge. eithe
13. $\Sigma f(\mathrm{ci}) \Delta \mathrm{xi}$, as $\Delta x \rightarrow 0$
14. An alternating series $\sum(-1)^{n} a^{n}$ converges if $\lim n \rightarrow \infty$ $\mathrm{a}^{\mathrm{n}}=0$ and $\mathrm{a}^{\mathrm{n}+1} \leq \mathrm{a}^{\mathrm{n}}$ for all n . 34. $f(\mathrm{x})=\Sigma f^{n}(\mathrm{c})(\mathrm{x}-\mathrm{c})^{\mathrm{n}} / \mathrm{n}!+\mathrm{R}(\mathrm{x})$, where $f^{n}(\mathrm{c})$ is the nth derivative of f at c.

Down

1. $\sum a r^{n}=a+a r+a r^{2}+\ldots=a /(1-r)=$ sum of a series
2. An equation involving the derivative(s) of a function.
3. If $h(x) \leq f(x) \leq g(x)$ for all x in an open interval
containing c, except possibly at c itself, and lim $x \rightarrow c$
$h(x)=\lim x \rightarrow c g(x)=L$, then $\lim x \rightarrow c f(x)$ exists and equals L.
4. If $\lim n \rightarrow \infty a^{n} \neq 0$, then the infinite series $\sum a^{n}$ diverges. ___ test
5. If a sequence is ____ and monotonic, then it converges.
6. An infinite series is \qquad if the sequence of partial sums is \qquad -.
7. $\int f(\mathrm{x}) \mathrm{dx}$ from a to $\mathrm{b}=f(\mathrm{c})(\mathrm{b}-\mathrm{a})$.
8. $\mathrm{d} / \mathrm{dx} f(\mathrm{x}) / \mathrm{g}(\mathrm{x})=\left(\mathrm{g}(\mathrm{x}) f^{\prime}(\mathrm{x})-f(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})\right) / \mathrm{g}^{2}(\mathrm{x})$
9. If the series $\sum\left|a^{n}\right|$ converges, then $\sum a^{n}$ converges.
10. $\mathrm{d} / \mathrm{dx} f(\mathrm{x}) \mathrm{g}(\mathrm{x})=f^{\prime}(\mathrm{x}) \mathrm{g}(\mathrm{x})+f(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})$
11. A series is convergent if $\sum a$ converges but $\overline{\sum\left|a^{n}\right|} \mid$ diverges.
12. When $f^{\prime}(x)$ is positive, $f(x)$ is
13. $d / d x x^{n}=n x^{\wedge}(n-1)$
14. A point where f^{\prime} changes from positive to negative is called a local \qquad —.
15. $\lim x \rightarrow \mathrm{c} f(\mathrm{x}) / \mathrm{g}(\mathrm{x})=f^{\prime}(\mathrm{x}) / \mathrm{g}^{\prime}(\mathrm{x})$, given that $\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$ is indeterminate at c
16. $\int f(x) d x$ from a to $b=F(b)-F(a)$, where F is an antiderivative of f. __ fundamental theorem of calculus
17. $d / d x(f f(t) d t$ from a to $x)=f(x)$. __ fundamental theorem of calculus
18. $\mathrm{d} / \mathrm{dx} f(\mathrm{~g}(\mathrm{x}))=f^{\prime}(\mathrm{g}(\mathrm{x})) \mathrm{g}^{\prime}(\mathrm{x})$
19. A function $F(x)$ that satisfies $F^{\prime}(x)=f(x)$
20. A sequence is \qquad if it's terms are either
nondecreasing or nonincreasing.
21. The series $\sum n^{\wedge}(-p)$ converges if $p>1$, and diverges if $p \leq 1$.
