AP Calculus BC crossword

Across

3. $\int f(x) dx$ from a to INF = lim c \rightarrow INF of $\int f(x) dx$ from a toc

5. A point where f changes from negative to positive is called a local _

8. If *f* is continuous on a closed interval, then *f* has both a minimum and maximum on the interval.

11. A point where f" changes from positive to negative or vice versa.

14. $(\int f(x)dx)/(b-a) = f(c)$. This solves for the _

21. When f'(x) is negative, f(x) is

24. $\int F'(g(x))g'(x)dx = F(u) + C = F(g(x)) + C$

26. For a convergent alternating series, the absolute value of the ______ in approximating the sum with the first n partial sums is less than or equal to the value of the first neglected term.

27. $f'(x) = \lim h \rightarrow 0 (f(x+h) - f(x))/h$. Definition of

30. Let sequences $a^n > 0$ and $b^n > 0$. If $\lim n \to \infty a/b = L$, where L is finite and positive, then the two sequences either both converge or both diverge. test

32. $\Sigma f(ci)\Delta xi$, as $\Delta x \rightarrow 0$

34. $f(x) = \sum f^{n}(c)(x-c)^{n}/n! + R(x)$, where $f^{n}(c)$ is the nth derivative of f at c.

Down

 $\overline{\mathbf{1} \cdot \Sigma ar^n} = a + ar + ar^2 + \dots = a/(1-r) = sum of a _ series$

2. An equation involving the derivative(s) of a function.

4. If $h(x) \le f(x) \le g(x)$ for all x in an open interval containing c, except possibly at c itself, and $\lim x \to c h(x) = \lim x \to c g(x) = L$, then $\lim x \to c f(x)$ exists and equals L.

6. If $\lim n \to \infty a^n \neq 0$, then the infinite series $\sum a^n = 0$ diverges. ____ test

7. If a sequence is _ _ and monotonic, then it converges.

9. An infinite series is ____ _____ if the sequence of partial sums is ____

10. $\int f(x) dx$ from a to b = f(c)(b-a).

12. $d/dx f(x)/g(x) = (g(x)f'(x) - f(x)g'(x))/g^{2}(x)$

13. If the series $\Sigma |a^n|$ converges, then Σa^n converges.

15. d/dx f(x)g(x) = f'(x)g(x) + f(x)g'(x)

... A series is ______ convergent if Σa^n converges but $\Sigma |a^n|$ diverges.

17. When f'(x) is positive, f(x) is

18. $d/dx x^n = nx^{(n-1)}$

19. A point where f' changes from positive to negative is called a local

20. $\lim x \rightarrow c f(x)/g(x) = f'(x)/g'(x)$, given that f(x)/g(x) is indeterminate at c

22. $\int f(x) dx$ from a to b = F(b) - F(a), where F is an antiderivative of f. ____ fundamental theorem of calculus

23. d/dx (ff(t)dt from a to x) = f(x). ____ fundamental theorem of calculus

25. d/dx f(g(x)) = f'(g(x))g'(x)

28. A function F(x) that satisfies F'(x) = f(x)

29. A sequence is _____ if it's terms are either nondecreasing or nonincreasing.

31. The series $\Sigma n^{(-p)}$ converges if p > 1, and diverges if p ≤ 1.