\qquad

Algebra Review

Across

1. if inverse functions are functions that undo each other, what is the inverse function of $y=4 x+12$
2. in the problem $(a+5)(a-5)$, what cancels
3. 10 to the negative third power is
4. factor $12 y^{\wedge} 2+18 y$ with the GCF
5. for an integer n greater than 1 , if $b^{\wedge} n=a$, then b is an \qquad root of a
6. when finding the power of a power, the exponents
$\overline{14 .}$ when multiplying powers with the same base, \qquad the exponents
7. the inverse relation of 3,7 would be 17. a \qquad is a monomial or a sum of monomials
8. when factoring completely, what commonality can you pull from $7 x^{\wedge} 4$ and $28 x^{\wedge} 2$
9. if solving by factoring, the roots of $2 x^{\wedge} 2+8 x=0$ are
10. after pulling the GCF out of this problem: $\left(a^{\wedge} 3+3 a^{\wedge} 2\right)+(a+3)$, what should you answer look like
11. the rule (if a and b are real numbers and $a b=0$, then $a=0$ or $b=0$) is also known as the

Down

4. the O in FOIL (a method used to multiply binomials) stands for
5. a polynomial in one variable is in when the exponents of the terms decrease from left to right
6. a relation that pairs one input with exactly one output
7. 256 to the $3 / 4$ power is
8. $(a+b)^{\wedge} 2$ simplifies to
9. when dividing powers with the same base, \qquad the exponents
10. when multiplying binomials and trinomials, you should use the distributive property to multiply, and then combine \qquad
11. simplify $2 x$ to the zero power / y to the negative seventh power
12. $\left(-5 x-x^{\wedge} 3+4\right)+\left(2 x+x^{\wedge} 3-1\right)$
13. in the equation $x^{\wedge} 2+7 x+12$, which pair of factors of 12 would you use to put your factors into binomials and FOIL 23. 87 to the zero power is
