Name: \qquad

Calculus BC Crossword

Across

4. Taylor series centered at zero
5. Which asymptote can you find by making the denominator equal to zero
6. If $\mathrm{s}(\mathrm{t})$ is position function then s " (t) determines
7. If f is continuous on $[a, b]$ and
differentiable on (a, b) and if $f(a)=f(b)$ then
there is at least one number con (a,b) such
that $f^{\prime \prime}(c)=(f(b)-f(a)) /(b-a)$. Which
theorem?
8. The first derivative mainly determines of the position function
9. The second derivative mainly determines \qquad of the position function
10. If $f^{\prime}(c)=0$ or f^{\prime} is undefined at c then c is a \qquad
11. A form of integration using the chain rule in reverse
12. If $s(t)$ is position function then $s^{\prime}(t)$ determines \qquad -
13. The method used to determine the volume of a function with a hole rotated around
14. A straight line that touches the curve at only one point
15. Take the \qquad to find the slope of the position function
16. Rule to differentiate a function composed of a function divided by another function

Down

1. Take the \qquad to find the area under a function
2. A function that is continuous is also
3. A point of \qquad happens at the point where the function changes concavity.
4. Which asymptote can you find by making the numerator equal to zero 8. If $f(c)$ is defined, the limit for $f(x)$ as x approaches c exists, and the limit and function are equal at c then f is \qquad
5. Approximation of the area of a function using rectangles under the curve 11. There is a \qquad at the point where f ' changes from positive to negative 12. When a function is not continuous it has
6. Avalue that a function approaches as an input approaches some value
7. The derivative of the first derivative 19. This test uses integration to determine if the series converges or diverges
8. If a series approaches a definite limit then it \qquad -
