$\qquad$

## Calculus



Across
4. $d / d x f / g=f^{\prime}(x) g(x)-g^{\prime}(x) f(x) / g(x)^{\wedge} 2$
8. Guarantees graph where slope $=0 f^{\prime}(x)=0$
10. continiuty implies $\qquad$
12. : the value that a function approaches as the
domain approaches a specific value
16 limit: a limit taken as the varaible approaches
16. ${ }_{\text {infinity }}$ limit: or -infinity
infinity or -infinity
21._rule: $d / d x[c]=0$
25. Derivative of a velocity function
27. __ : a line that a graph approaches but never touches
29. _ maximum: the highest point over the entire
domain of a function
32. antiderivative of $1 / x$
33. Derivative of $\operatorname{Sin} x$
34. __ minimum: the lowest point in a particular sction of a graph
36. derivative of cotx
38. Antiderivative of $\cos x$
39. Definition of .... Lim $h \rightarrow 0 f(x+h)-f(x) / h$

| Word Bank |  |
| :---: | :---: |
| notation | Sec squared x |
| inflections | second |
| limit | relative |
| continuous | Constant |
| one | integrability |
| absolute | Negative sin $x$ |
| Mean Value Theorem | power |

Word Bank
notation
limit
one

Mean Value Theorem form
40. points of __ can be found by taking the 2nd derivative
41. _equations: relate a function with one or more of its derivatives
42. _rule: $d / d x x^{\wedge} n=n x^{\wedge} n-1$
43. $V=p i\left[f(x)^{\wedge} 2-g(x)^{\wedge} 2\right] d x$

## Down

1. Concavity can be found by taking the ___ derivative 2. U__ can be used when integrating complex integrals 3. Differentiability implies $\qquad$
2. sigma _ _ : allows a long sum to be written compactly 6. differentation allows you to find the derivative of $y$ with respect to $x$
3. Guarntees a particular slope on a curve given the average slope between endpoints
4. if a graph has no holes, gaps, or discontinuities it is
5. when a function is not continuous it has
6. antiderivative of $\tan x$
7. Derivative of $\cos x$
8. __ points can be found by taking the first derivative 17. Antiderivative of $\sin x$

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| extrema | negative $\ln \operatorname{cosx}$ | infinite | slope |
| Product rule | Continuity | Acceleration | Cosx |
| Rolle's Theorem | Secx tanx | Negative cosx | negative csc squared x |
| substitution | Inx | Implicit | Disc Method |
| negative cscx cotx | Derivative | chain rule | critical |
| Velocity | discontinuity | Sinx | Washer Method |
| Quotient rule | differential | Asymptote | fields |

