Name:
Date: \qquad

Chapter 5

Across

1. The theory that opposing retinal processing enable color vision
2. Reduced sensitivity in response to constant stimulation
3. Nerve cells in the brain that respond to specific features of stimulus, such as shape, angles, or movement
4. The point at which the optical nerve leaves the eye; this part of the retina is "blind" because it has no receptor cells
5. A laboratory device for testing death perception in infants and young animals
6. Below a person's absolute threshold for conscious awareness
7. The ability to see objects in three dimensions, although the images that strike the retina are two dimensional; allows us to judge distance.
8. The dimension of color that is determined by the wavelength of light; what we know as color names blue, green, etc.
9. A binocular cue for perceiving death. By comparing images from the
two eyes, the brain computes distance- the greater the disparity between tow mages, the closer the object
10. An organized whole. To integrate pieces of information into meaningful wholes.
11. The organization of the vision field into objects that stand out from there surrounding The organization of the vision field into objects that stand out from there surrounding
12. The light-sensitivity inner surface of the eye; contains the receptor rods and cones plus layers of neurons that begin the processing of visual information.
13. A mental predisposition to perceive one thing and not another
14. The distance from the peak of one light wave or sound wave to the peak of the next
15. Information processing guided by higher-level mental processes, as when we constuct perceptions drawing on our experience and expectations Down
16. Processing many aspects of problem or scene at the same time; the brain natural mode of information processing for many functions, including vision.
17. The theory that the retina contains three different types of color eceptors (red, green, and blue); when stimulated in combination, these eceptors can produce the perception of any color
18. The minimum difference between two stimuli required for detection 50 percent of the time. We experience this as a just noticeable difference (or jnd).
19. The minimum stimulus energy needed to detect a particular stimulus 50 percent of the time
20. Analysis that begins with the sensory receptors and works up to the brain's integration of sensory information.
21. A depth cue, such as retinal disparity, that depends on the use of two eyes.
22. The principle that, to be perceived as different, two stimuli must differ by a constant minimum percentage (rather than a constant amount)
23. The process by which our brain organizes and interprets sensory information, transforming it into meaningful objects and events
24. The amount of energy in a light wave or sound wave, which influences what we perceive as brightness or loudness. It is determined by the wave's amplitude (height).
25. Retinal receptors that are concentrated near the center of the retina; in daylight or well-lit conditions, cones detect fine detail and give rise to color sensations
26. Activating, often unconsciously, associations in our minds, thus setting is up to perceive remember or respond to objects or events in certain way. us to perceive, remember or respond to objects or events in certain way m the eye to the brai
27. Changing one form of energy into another. In sensation, the
transforming of stimulus energies, such as sights, sounds, and smells into
neural impules our brain can interpret.
28. The process in which our sensory receptors and nervous systems recieve and represent stimulus energies from our enviornment
29. The perceptual tendency to organize stimuli into meaningful groups
30. Retinal receptors that detect black, white, and grey, and are sensitive to movement; necessary for peripheral and twilight vision, when cones don't respond.

Word Bank

sensation
Three color theory
Blind spot
Wavelength
Death Perception
Binocular cue
difference threshold

Figure-ground perception absolute threshold Gestalt Perceptual set Sensory adaptation

Parallel processing Weber's law top-down processing Opponent-Process Theory Optical nerve bottom-up processing

Grouping subliminal Hue transduction Retinal disparity Retina

Rods
Cones
Intensity
Feature detectors
priming
Visual cliff

