$\qquad$

## Chemical Kinetics and Chemical Equilibrium



## Across

6. When the container volume is increased, the system will shift to $\qquad$ its volume.
7. The reaction $A+2 B-->C$ is a $\qquad$ order reaction.
8. The unit for $k$ in a first order reaction
9. This is constant in zero order reactions
10. Properties, concentration, temperature, and catalysts are examples of factors that affect
$\qquad$ reactions.
11. Pure solids and $\qquad$ are left out of an equilibrium constant expression.
12. For the reaction $\mathrm{NH} 4 \mathrm{Cl}(\mathrm{aq})$ $-->\mathrm{NH} 3(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$, the equation will shift $\qquad$ when pressure is increased.

## Down

1. How the exponents in a rate law equation are determined
2. For the equation $\mathrm{N} 2(\mathrm{~g})+$ $2 \mathrm{O2}$ (g) --> 2NO2 (g), the concentration of NO2 is $\qquad$ _.
3. This speeds up a reaction without being consumed
4. " p " is known as this in the Arrhenius equation
5. This acts as a intermediary between the reactants and products in a reaction
6. This prevents a substrate from the action of an enzyme
7. For $K c=[A][B]^{\wedge} 2$, if $A$ is halfed and $B$ is doubled, the value of Kc $\qquad$
8. This happens to an enzyme if the temperature goes above or below the temperature range
