Math Crossword

Across

3. An angle with measures less than or equal to 180 degrees. Its vertex lies on the center of the circle. 4. Two angles whose measures have a sum of 90
degrees. $\mathrm{m}<3+\mathrm{m}<4=90$
4. A set of nonzero whole numbers a, b, and c . So that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$.
5. An angle whose vertex lies on the circle. Its sides contain chords on the circle.
6. The side of the triangle that touches the indicated angle. Not the hypotenuse or opposite leg.
7. "If P, then Q" -> "if Q, then P". Just the opposite of a theorem.
8. If one plane figure can be obtained from the other plane figure by a sequence of rigid motions. Equal.
9. A segment whose endpoints lie on a circle. They do not continue on further than the circle.
10. The leg that does not touch the indicated angle. Not the hypotenuse or the adjacent leg.
11. An argument that uses logic to show that a conclusion is true. A grueling process.
12. A segment that has endpoints on the circle and passes through the center of the circle to the other side. Twice the measure of the radius.
13. A sequence of transformations that do not change
the size or shape of a figure. Only moves it around.
14. The nonadjacent angles formed by two intersecting
lines. Across from each other.
15. A sequence of transformations that change the size and/or shape of a figure. A dilation is an example.
16. A function that takes points on the plane and maps
them to other points on a plane. Rigid or non-rigid.
17. Two column proof. A logical step in proving your conclusion.
18. $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$. Used to solve unknown sides of exclusively right triangles.

Down

1. The distance around a circle. The perimeter. 2. Angles that lie on the same side of the transversal between the intersecting lines. Supplementary.
2. An unbroken parts of a circle consisting of two endpoints. Also including all of the points in between.
3. $(\mathrm{x}-\mathrm{h}) 2+(\mathrm{y}-\mathrm{k}) 2=\mathrm{r} 2$. Center (h,k), radius r .
4. Nonadjacent angles that lie on opposite sides of the transversal between intersected lines. Congruent.
5. A line that intersects two coplanar lines at two
different points. Usually intersecting parallel lines.
6. Angles that lie on opposite sides of the transversal outside intersected lines. Congruent.
7. Angles that lie on the same side of the transversal on the same side of the intersecting lines. Congruent.
8. Two angles whose measures add up to equal 180 degrees. $\mathrm{m}<1+\mathrm{m}<2=180$ degrees.
9. The mathematical logic that allows you to justify statements. Two column proof.
10. The whole amount of space in a circle. $\pi \mathrm{r} 2$ (pir squared)
11. A segment whose endpoints are the center of a circle and a point on the circle. The distance from the center of the circle to any point on the circle.
12. A line in the same plane as a circle. It intersects the circle in exactly and only one point.

Word Bank
Adjacent Leg
Same Side Interior
Tangent
Statement
Central Angle
Alternate Exterior
Chord
Proof
Equation of a Circle
Inscribed
Converse
Circumference

Congruent Alternate Interior Pythagorean Triple Area
Transformation Arc

Opposite Leg
Reason
Transversal
Radius
Pythagorean Theorem Complementary

