Name: Date: ____

Mechanics of Materials CIVL 304

Across

- 1. Slope of a stress vs strain curve
- 2. The stress at the outer fibers of the beam would be zero, and the maximum value would occur at the N.A.
- **5.** Is generally expressed as the ratio of total displacement to the original length.
- 6. Materials that exhibit little to no yielding before failure are known as
- 7. Shear stress that is caused by a torque
- 10. The point in which a material has reached its maximum
- 11. The distribution of this stress on the cross-section of the beam represents a parabolic curve where the maximum value occurs at the z-axis of the beam
- **16.** The transformation equations for plane stress can be represented in graphical form by a plot
- 21. A shaft's cross-sectional area about the shaft's longitudinal axis
- 22. Refers to the movement of a beam or node from its original position due to the forces and loads being applied to the member
- 25. Can be calculated by C+R

- 26. the amount of force per unit of cross-sectional area 28. (Q) simply measures the distribution of a beam sections's area relative to an axis
- 29. material that can be subjected to large strains before it fractures is
- 30. Lateral strain to longitudinal strain
- 31. the angle through which fixed end of a shaft rotates with respect to the free end
- 32. method of specifying the allowable load for a member is

Down

- 3. The point where the material will rupture
- 4. a stress that occurs when a member is loaded by an axial force, also known as the force divided by the cross sectional area
- 8. Can be calcuated by C-R
- 9. the point at which the shear would be the highest, this lies along the NA
- 12. an angle between the major principal stress and the
- 13. equal to the ratio of the tangential force per unit area to the resulting angular deformationSymbol: G

- 14. used to calculate the yield stress of a material on a stress vs strain curve
- **15.** The stress at these points on a beam are at a maximum on the outer portion of the beam
- 17. This varies linearly from zero at the neutral axis to a maximum at the outer fibers.
- **18.** Is an analytical tool used in conjunction with structural analysis to help perform structural designs by determining the value of shear force. 19. Stress is equal to the M.O.E times the Strain
- 20. is an analytical tool used in conjunction with structural analysis to help perform structural designs by determining the value of the bending moment
- 23. The z axis that lies along the neutral surface
- 24. is a property of shape that is used to predict deflection, bending and stress in beams
- 27. stress that is represented by the forces inside the cylinder acting towards the circumference perpendicular to the length of the pipe.

Word Bank

Bending Diagram Deflection Bending stress Brittle Failure Modulus of Elasticty **Neutral Axis** Normal Strain Hoop Area Moment of I Major Principal Axial

Ductile First Moment of Area Polar Moment of I Factor of Safety modulus of rigidity Angle of major P (Op) Mohr's Circle Bending Stress @ NA Normal stress Shear stress @ N.A. Hooke's Law Shear Diagram Ultimate 2% offset method

Torsional shear Max Shear Poisson's Ratio Angle of twist Minor Principal Shear Stress