Name: \qquad Date: \qquad

Mechanics of Materials CIVL 304

Across

1. Slope of a stress vs strain curve
2. The stress at the outer fibers of the beam would be zero, and the maximum value would occur at the N.A. 5. Is generally expressed as the ratio of total displacement to the original length.
3. Materials that exhibit little to no yielding before failure are known as
4. Shear stress that is caused by a torque
5. The point in which a material has reached its maximum stress is known as
6. The distribution of this stress on the cross-section of the beam represents a parabolic curve where the maximum value occurs at the z -axis of the beam
7. The transformation equations for plane stress can be represented in graphical form by a plot
8. A shaft's cross-sectional area about the shaft's ngitudinal axis
9. Refers to the movement of a beam or node from its riginal position due to the forces and loads being applied to the member
10. Can be calculated by $\mathrm{C}+\mathrm{R}$
11. the amount of force per unit of cross-sectional area
12. (Q) simply measures the distribution of a beam
ections's area relative to an axis
13. material that can be subjected to large strains before it ractures is
14. Lateral strain to longitudinal strain
15. the angle through which fixed end of a shaft rotates with
respect to the free end
16. method of specifying the allowable load for a member is o use a

Down

3. The point where the material will rupture
4. a stress that occurs when a member is loaded by an axial force, also known as the force divided by the cross sectional area
5. Can be calcuated by C-R
6. the point at which the shear would be the highest, this lies along the NA
7. an angle between the major principal stress and the
x-axis
8. equal to the ratio of the tangential force per unit area to the resulting angular deformationSymbol: G

Word Bank

Bending stress
Failure
Neutral Axis
Hoop
Major Principal
Ductile

Bending Diagram
Brittle
Modulus of Elasticty
Normal Strain
Area Moment of I
Axial
First Moment of Area

Polar Moment of Factor of Safety modulus of rigidity Angle of major P (Op) Mohr's Circle Bending Stress @ NA

Normal stress
Shear stress @ N.A.
Hooke's Law
Shear Diagram
Ultimate
2% offset method

Torsional shear Max Shear
Poisson's Ratio Angle of twist Minor Principa Shear Stress

