\qquad

MRI PHYSICS CHAPTER 4 PARAMETERS AND TRADE-OFFS

Across

2. pixel \times pixel \times slice thickness $=$
3. FOV divided by Matrix =
4. specific FOV that is useful for imaging areas which do not fill the typical square FOV
5. two-dimensional representation of a voxel
6. True or False- when positioning the coil it should always be placed parallel to the magnetic field to receive the best signal
7. technique used to suppress background tissue and increase CNR 21. True of False- square pixels have better spatial resolution than rectangular pixels
8. difference in SNR between two adjacent areas
9. for ideal volume resolution, each voxel must be symmetrical or \qquad 24. amplitude of signal vs. amplitude of noise

Down

1. matrix with low frequency encodings and low phase encodings
2. three-dimensional volume element depicting the volume of tissue within the patient
3. range of frequencies sampled during the readout gradient
4. ability to distinguish between two points as separate and distinct
5. best type of imaging for joints and small lesions
6. True or False- in respect to Signal to Noise Ratio, you should always use the largest coil possible to receive as much signal as possible
7. matrix with high frequency encodings and high phase encodings
8. number of protons in a specific area that determines the amplitude of the signal received
9. when acquiring volume slices for depicting small lesions in one plane only, voxels may be
10. voltage induced in receiver coil by precession of the NMV
11. determines number of pixels in FOV
12. TR x \# of Phase Encodes x \# of Averages
13. time needed to complete data acquisition
14. frequencies that exist randomly in space and time
